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The effect of interfacial bending stiffness on the deformation of liquid capsules
enclosed by elastic membranes is discussed and investigated by numerical simula-
tion. Flow-induced deformation causes the development of in-plane elastic tensions
and bending moments accompanied by transverse shear tensions due to the non-
infinitesimal membrane thickness or to a preferred configuration of an interfacial
molecular network. To facilitate the implementation of the interfacial force and torque
balance equations involving the hydrodynamic traction exerted on either side of the
interface and the interfacial tensions and bending moments developing in the plane of
the interface, a formulation in global Cartesian coordinates is developed. The balance
equations involve the Cartesian curvature tensor defined in terms of the gradient of
the normal vector extended off the plane of the interface in an appropriate fashion.
The elastic tensions are related to the surface deformation gradient by constitutive
equations derived by previous authors, and the bending moments for membranes
whose unstressed shape has uniform curvature, including the sphere and a planar
sheet, arise from a constitutive equation that involves the instantaneous Cartesian cur-
vature tensor and the curvature of the resting configuration. A numerical procedure
is developed for computing the capsule deformation in Stokes flow based on standard
boundary-element methods. Results for spherical and biconcave resting shapes re-
sembling red blood cells illustrate the effect of the bending modulus on the transient
and asymptotic capsule deformation and on the membrane tank-treading motion.

1. Introduction
The hydrostatics and hydrodynamics of liquid capsules enclosed by thin elastic

shells or chemical and biological membranes consisting of molecular networks have
received considerable attention in cellular biology, bioengineering, and microencap-
sulation technology. Fundamental studies have sought to establish the significance
of the interfacial mechanical properties on the equilibrium shape, deformability, and
transient motion of capsules in various types of flow, and to quantify their effect on
the rheology of dilute and concentrated suspensions. Since the interfacial properties
are related to the interface thickness or molecular constitution, hydrodynamical diag-
nostics may be used to probe and ultimately guide the design of capsules with desired
properties.

Previous authors have studied the deformation of capsules enclosed by elastic
shells of small or infinitesimal thickness using analytical, experimental, and numer-
ical methods. The pioneering theoretical investigations of Barthès-Biesel (1980) and
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Barthès-Biesel & Rallison (1981) illustrated the effect of interfacial elasticity on the
capsule deformation and on the rheology of dilute suspensions for small deformations
from the spherical shape. Numerical studies for moderate and large deformations were
subsequently presented by Pozrikidis (1995), Eggleton & Popel (1998), Ramanujan &
Pozrikidis (1998), and Navot (1998). Laboratory studies were conducted by Chang &
Olbright (1993a, b), and more recent observations were reported by Walter, Rehage
& Leonhard (2000). Other authors incorporated the effects of surface viscosity and
incompressibility relevant to biological membranes consisting of lipid bilayers, as
reviewed by Pozrikidis (2001).

In addition to viscous, elastic, and isotropic tensions developing to ensure surface
incompressibility, capsule interfaces develop bending moments by several physical
mechanisms. First, stresses developing over the cross-section of membranes consisting
of elastic sheets with non-zero thickness may be integrated over the cross-section
to yield stress resultants recognized as tensions, and tangential bending moments
accompanied by transverse shear tensions directed normal to the local tangential
plane (e.g. Libai & Simonds 1998). Second, molecular membranes composed of three-
dimensional proteinic or polymeric networks with fixed connectivity exhibit bending
moments due to a preferred three-dimensional unstressed configuration (e.g. Lipowsky
1991). Changes in the solid angles subtended by the bonds raise the potential energy
stored in the molecular network and generate bending moments that tend to restore
the unstressed configuration. In computational models, the bending energy has been
expressed in terms of projections of the unit normal vectors over planar elements
defined by three adjacent bonds (e.g. Boey, Boal & Discher 1998; Discher, Boal &
Boey 1998). Third, membranes consisting of symmetric thin sheets of amphiphilic
molecules favour flat shapes and require energy expenditure to obtain curved shapes
(e.g. Lipowsky 1991; Seifert, Berndl & Lipowsky 1991; Seifert 1997).

The development of bending moments endows a shell-like membrane with flexural
stiffness whose magnitude may be expressed in terms of a bending modulus that
is generally distinct from, and unrelated to, the modulus of elasticity for in-plane
deformation. In the absence of bending stiffness, an elastic membrane may wrinkle
to develop corrugations with arbitrarily small wavelength under compression. More
important, a membrane may fold without resistance to form cornered shapes with
small or even vanishing curvature. The presence of bending stiffness imposes limits on
the minimum attainable length scale by restricting the minimum radius of curvature
above a certain threshold. Steigmann & Ogden (1997, 1999) studied the deformation
of membranes coated on the surface of a two- or three-dimensional elastic medium,
and concluded that a surface model that does not account for bending stiffness
cannot be used to simulate local surface features engendered by the response of
solids to compressive surface stress of any magnitude. Although their conclusions
apply to deformations of membranes coated on linearly elastic materials, membranes
separating viscous fluids are expected to behave in a similar fashion.

Bending stiffness expressed by an appropriate potential energy is believed to play
a central role in determining the equilibrium configuration and the shape oscillations
of biological membranes consisting of lipid bilayers, including the membrane of red
blood cells (Lipowsky 1991). For example, it has long been recognized that, in the
absence of bending stiffness, a biconcave capsule is not able to support tensions
at equilibrium, and a singularity occurs at the point of extreme axial position (e.g.
Fung 1965). The inclusion of bending moments, however small, removes the singular
behaviour and allows for tension-bearing interfaces at equilibrium.

The energy of a membrane consisting of a lipid bilayer may be expressed in
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terms of a functional involving the distributions of mean and Gaussian curvature
multiplied by corresponding bending moduli, as proposed by Canham (1970) and
Helfrich (1973), and reviewed by Seifert (1997). At thermal equilibrium, and in the
absence of flow-induced deformation, a vesicle enclosed by a membrane assumes a
shape with minimum bending energy subject to constraints on the membrane surface
area and capsule volume. A variety of stationary and oscillating shapes have been
computed based on this formulation using asymptotic and numerical methods. More
recently, the analysis has been extended to account for chemical asymmetries in the
bilayer and for changes in the molecular surface density due to bending (Seifert 1997).

Our goal in this paper is two-fold. First, to present a formalism that allows the
coupling of the membrane to the fluid mechanics in global Cartesian coordinates, and
thereby facilitate the theoretical development and the implementation of standard
numerical methods for simulating the capsule deformation. Second, to illustrate, in
quantitative terms, the effect of bending stiffness on the flow-induced deformation of
liquid capsules in Stokes flow, and thereby extend the work of previous authors for
membranes that develop only in-plane tensions. The general formulation lends itself
to similar problems of flow–structure interaction considered by Pedley, Heil, Luo, and
others, as will be discussed in the concluding section.

2. Hydrodynamics and interface mechanics
Consider flow past a capsule containing a viscous fluid labelled 2 and suspended

in another fluid labelled 1, as illustrated in figure 1(a). The hydrodynamic traction
exerted on either side of the interface is denoted, respectively, by f(2) = σ(2) · n and
f(1) = σ(1) · n, where σ is the hydrodynamic stress tensor, and n is the unit vector
normal to the interface pointing outward from the capsule, and the superscripts have
the obvious meanings.

The interface is occupied by a membrane that develops anisotropic tensions in the
plane of the interface, transverse shear tensions directed normal to the interface, and
bending moments in the tangential plane. To balance the resulting interfacial forces,
the hydrodynamic traction undergoes a discontinuity across the interface, defined as

∆f ≡ f(1) − f(2) = n · (σ(1) − σ(2)). (2.1)

Knowledge of the traction discontinuity allows us to compute the instantaneous
distribution of the velocity over the interface by solving an integral equation of the
second kind,

ui(x0) =
2

1 + λ
u∞i (x0)− 1

4πµ (1 + λ)

∫
Interface

Gij(x0, x) ∆fj(x) dS(x)

+
1− λ
1 + λ

1

4π

∫ PV

Interface

uj(x)Tjik(x, x0) nk(x) dS(x), (2.2)

where the point x0 lies at the interface, u∞ is the velocity of a specified externally
imposed flow, µ is the viscosity of the ambient fluid, λµ is the viscosity of the capsule,
Gij , Tijk are the velocity and stress Green’s functions of the equations of Stokes flow,
and PV denotes the principal value of the double-layer integral (e.g. Pozrikidis 1992).
Implicit in (2.2) is the assumption that the velocity is continuous across the interface.
Having solved the integral equation (2.2), we may evaluate the velocity at any point in
the exterior or interior of the capsule using the integral representation of Stokes flow.



272 C. Pozrikidis

n

b
t

n
t

Fluid 1

Fluid 2

Fluid 1

Fluid 2
Fluid 1

y
q

z

x
u

τs

τu
mu

ms

y

q

m

l

τ

x

Fluid 2

(a)

(b)

(c)

Figure 1. Schematic illustration of (a) a three-dimensional, (b) an axisymmetric capsule, and (c) a
two-dimensional capsule enclosed by a membrane that develops in-plane elastic tensions, transverse
elastic tensions, and elastic bending moments.

The theory of thin shells provides us with a natural framework for modelling the
stresses developing over interfaces with a membrane-like constitution of small or
infinitesimal thickness. Following the standard formalism, we regard the membrane
as a curved two-dimensional medium, and describe its mid-surface in parametric form
using two surface curvilinear coordinates (ξ, η) identifying Lagrangian point particles
over the interface.

Consider a membrane at a reference configuration ΩR , and denote the positions of
point particles by xR(ξ, η), and the corresponding unit normal vector pointing outward
by nR(ξ, η). Assume now that the membrane deforms to a new configuration Ωt, and
denote the new positions of the point particles by x(ξ, η), and the corresponding unit
normal vector by n(ξ, η). The energy stored in the membrane due to the developing
tensions and bending moments may be expressed as a surface integral over the
reference shape ΩR involving appropriate measures of strain and bending. The traction
discontinuity ∆f may then be computed in terms of the surface energy using the
principle of virtual displacements, as follows (e.g. Valid 1995).

Consider an infinitesimal incremental deformation of the interface from the current
configuration Ωt, corresponding to the infinitesimal energy variation δE. The principle
of virtual displacements provides us with an integral equation of the first kind for the
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hydrodynamic traction discontinuity,

δE =

∫
Ωt

∆f · δx dS. (2.3)

Assume, for illustration, that the interface energy is equal to the instantaneous surface
area SΩt multiplied by the uniform surface tension γ. Using results of differential
geometry, we find

δE = γδSΩt = γ

∫
Ωt

2κmn · δx dS (2.4)

where κm is the interface mean curvature. Comparing (2.4) with (2.3), we find the
well-known relationship for the jump in traction across an interface with constant
surface tension, ∆f = γ 2κmn.

The solution of (2.3) in the more general case of non-isotropic tension can be found
by expanding the dispacement δx(ξ, η) and traction discontinuity in series of basis
functions, and then deriving algebraic equations for the coefficients by linearization.
In the simplest approach, the integral on the left-hand side of (2.3) is approximated
with a weighted sum over interfacial nodes using the mid-point rule, and variations
are considered with respect to infinitesimal displacements of the nodes (Kraus et
al. 1996). In this case, the traction discontinuity at a node arises directly from the
respective variation, and solving an integral equation is not required. Higher-order
disretization based on finite-element or boundary-element methods requires solving
systems of linear integral equations descending from the integral equation.

As an alternative, the jump in the hydrodynamic traction may be computed directly
by balancing the interfacial forces and torques and the rate of change of the interface
linear and angular momentum, taking into explicit consideration interfacial tensions,
transverse shear tensions, and bending moments. These balances may also be derived
by applying the principle of virtual displacements on an infinitesimal interfacial patch,
using variations in displacement that express, respectively, rigid-body translation and
rotation.

To facilitate the coupling of shell and fluid mechanics, it is desirable to express the
membrane tensions and bending moments in global Cartesian coordinates. Global
Cartesian formulations have been developed by Valid (1995) for shells of infinitesimal
thickness with emphasis on the principle of virtual displacements, and by Libai
& Simonds (1998, Chapter VIII) in the more traditional setting of the theory of
thin shells. Our first task is to establish a theoretical framework that allows a
direct physical intepretation and facilitates numerical computation based on standard
numerical methods.

3. Interfacial tensions and bending moments
To develop the global Cartesian formulation, we describe the in-plane tensions

developing in the membrane by the Cartesian tensor τ , so that the in-plane tension
exerted on a cross-section of the membrane that is normal to the tangential unit vector
b, as illustrated in figure 1(a), is given by b · τ ; furthermore, we require n · τ = 0 and
τ · n = 0 to ensure that the tensions lie in the tangential plane. The transverse shear
tension is described in terms of the global Cartesian vector q, so that the transverse
shear tension in the direction of the unit normal vector n exerted on a cross-section
of the membrane that is normal to the tangential unit vector b is given by b · q; the
extension to three dimensions is effected by requiring n ·q = 0. The complete interface
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tension tensor, incorporating tangential and transverse shear tensions, is given by

T ≡ τ + qn. (3.1)

The bending moments are expressed in terms of the global Cartesian tensor m, so
that the moment vector exerted on a membrane cross-section that is normal to the
tangential unit vector b is given by n× (b ·m); furthermore, to ensure that the bending
moments lies in the tangential plane, we require n ·m = 0 and m · n = 0.

3.1. Cartesian curvature tensor

To prepare the ground for deriving interface equilibrium equations and constitutive
relations for the bending moments in global Cartesian coordinates, we introduce the
Cartesian curvature tensor defined as the gradient of the unit vector normal to the
interface pointing outward from the capsule, properly extended off the interface into
the three dimensional space,

B ≡ P · ∇n, (3.2)

where

P ≡ I − nn (3.3)

is the tangential projection operator. By definition, and because of the constancy of
the length of the unit normal vector,

n · B = B · n = 0, (3.4)

which shows that the normal vector is an eigenvector of B and its transpose with a
corresponding zero eigenvalue. The two remaining eigenvectors lie in a plane that is
tangential to the interface and are parallel to the mutually orthogonal directions of
principal curvature. If e(1), e(2) are the tangential unit eigenvectors, and κ1, κ2 are the
corresponding principal curvatures, then B can be expressed in the form

B = κ1e
(1)e(1) + κ2e

(2)e(2). (3.5)

If the surface is locally spherical, the two principal curvatures are equal to the local
mean curvature, κ1 = κ2 = κm, and B = κmP .

The mean curvature of the interface, denoted by κm, derives from the trace of B
from the relation

2κm = Trace (B), (3.6)

which is clearly satisfied when B = κmP . The Gaussian curvature, however, is not
related to the determinant of the Cartesian curvature tensor in a simple manner,
as it is related to the determinant of the two-dimensional intrinsic curvature tensor
defined in terms of derivatives of the normal vector with respect to surface curvilinear
coordinates.

To evaluate the curvature tensor B at a point, we consider the variation of the
Cartesian components of the position vector x and unit normal vector n along two
generally non-orthogonal surface curvilinear coordinates ξ and η, and require

∂n

∂ξ
=
∂x

∂ξ
· B , ∂n

∂η
=
∂x

∂η
· B . (3.7)

Appending to these vector equations the constraint n ·B = 0, we derive three systems
of three linear algebraic equations for the three columns of B .
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3.2. Interface equilibrium conditions

Consider a patch of an interface denoted as P , enclosed by a closed loop denoted as
C , and a vector or tensor function of position F defined in three-dimensional space.
The Gauss divergence theorem provides us with the identity∫

P

(P · ∇) · (P · F ) dS =

∫
C

(t× n) · F dl, (3.8)

where t is the unit vector that lies in the plane of the interface and is tangential to
C . The integrand on the left-hand side of (3.8) is the surface divergence of F . If F is
normal to the interface, then its suface divergence vanishes.

Assuming now that the mass and thus the inertia of the interface is negligible, we
balance the hydrodynamic traction exerted on either side of the interfacial patch with
the tensions exerted around the edges, identify F with the complete tension tensor
T = τ + qn defined in (3.1), apply the divergence theorem, and take the limit as the
surface area of the patch becomes infinitesimal to derive the differential form of the
force equilibrium equation,

∆f = −(P · ∇) · (τ + qn) = −Tr [(P · ∇)(τ + qn)]. (3.9)

The right-hand side of (3.9) is the negative of the surface divergence of the complete
interface tension tensor τ + qn.

Performing an analogous torque balance taking into consideration the bending
moments exerted around the edges of a selected interfacial patch, we derive an
expression for the transverse shear tension vector in terms of the surface divergence
of the tensor of bending moments

q = [(P · ∇) ·m] · P = Tr [(P · ∇)m] · P , (3.10)

and another expression for the antisymmetric part of the in-plane tension tensor

τ − τT = B ·m −mT · B , (3.11)

where the supersrcipt T denotes the matrix transpose. The asymmetry of the in-plane
tension tensor is due to the effective surface torque field generated by the bending
moments and associated transverse shear tensions on a curved interface.

Libai & Simmonds (1998) presented the differential force balance (3.9) in their
equation (F.2), p. 460, and derived the differential torque balance in the form

P · ∇MT = (N · ∇)× x (3.12)

in their equation (F.6), p. 461. In their notation, N = TT , where T is defined in (3.1).
Their bending moment tensor M is related to its more conventional counterpart m
by the relation Mij = εilknlmjk . Substituting this relation into (3.12), and decomposing
the resulting expression into normal and tangential components, we obtain equations
(3.10) and (3.11), thereby confirming the consistency of the present approach.

When the shape of the interface, the elastic tensions, and the bending moments are
axisymmetric, as illustrated in figure 1(b), the principal directions of τ and m lie in,
or are normal to, a plane of constant meridional angle ϕ. To simplify the notation,
we denote the corresponding elastic tensions by τ s and τϕ, and the corresponding
bending moments by ms and mϕ, as illustrated in figure 1(b). The vectorial transverse
shear tension lies in a meridional plane and is given by q = q ts, where ts is the unit
vector tangential to the interface in a meridional plane, and q is the scalar transverse
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shear tension. Substituting the expressions

τ = τs ts ts + τϕ tϕ tϕ, m = ms ts ts + mϕ tϕ tϕ (3.13)

into the force equilibrium equation (3.9), and using identities of differential geometry
to simplify the resulting equation, we find

∆f =

[
κs τs + κϕτϕ − 1

σ

∂

∂s
(σq)

]
n−

[
∂τs

∂s
+

1

σ

∂f

∂s
(τs − τϕ) + κsq

]
ts, (3.14)

where s is the arclength along the trace of the interface in a meridional plane measured
in the direction of the tangential unit vector ts, σ is the distance from the x-axis, and
the position of the interface is described by the function σ = f(s).

Using (3.10), we find that the transverse shear tension is derived from the bending
moments by the relation

q =
1

σ

∂f

∂s

[
∂

∂σ
(σms)− mϕ

]
. (3.15)

Equations (3.14) and (3.15) are in agreement with the classical equations of axisym-
metric membrane theory derived in surface curvilinear coordinates (e.g. Timoshenko
& Woinowsky-Krieger 1959).

In the case of a two-dimensional interface illustrated in figure 1(c), we obtain the
simpler forms

∆f = − ∂
∂l

(τt + qn) =

[
κτ − ∂q

∂l

]
n−

[
∂τ

∂l
+ κq

]
t, (3.16)

and

q =
∂m

∂l
, (3.17)

where l is the arclength measured in the direction of the unit tangent vector t, κ is the
curvature of the interface in the (x, y)-plane satisfying ∂t/∂l = −κn and ∂n/∂l = κt,
and the rest of the symbols have the obvious meanings.

To compute the jump in the hydrodynamic traction across the interface, ∆f, we
require constitutive equations for the in-plane tensions and bending moments in
global Cartesian coordinates.

4. Constitutive equations
In the absence of bending moments, the transverse shear stress vanishes and

the tensor of the in-plane tensions is symmetric. To develop constitutive equations
for finite deformation in global Cartesian coordinates, we follow Barthès-Biesel &
Rallison (1981) and consider an infinitesimal interfacial material vector at a reference
state and at the deformed state, denoted, respectively, by dlR and dl, and introduce
the surface deformation gradient defined by the relations

dl = F S · dlR, F S · nR = n · F S = 0. (4.1)

The second of equations (4.1) ensures that a material vector that is normal to the
interface at the reference state is compressed to zero length at the deformed state.
The polar decomposition theorem allows the factorization of F S into the product
of an orthogonal matrix R expressing plane rotation, and a symmetric and positive-
definite stretch matrix U or V , in the form F S = RU = VR . The symmetric and
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positive-definite left-hand Cauchy–Green deformation tensor is defined as

V 2 = F S · F ST . (4.2)

One eigenvector of V 2 corresponding to zero eigenvalue is normal to the deformed
surface, and the remaining two eigenvectors corresponding to the eigenvalues λ2

1 and
λ2

2 are tangential to the deformed surface.
The in-plane tensions developing in a hyperelastic membrane are derived from a

strain-energy function W (Λ1, Λ2) as

τ =
1

hS

(
∂W

∂Λ1

P +
∂W

∂Λ2

V 2

)
, (4.3)

where Λ1 and Λ2 are two invariants of V 2 defined as

Λ1 ≡ log hS = log (λ1λ2), Λ2 ≡ 1
2
Trace [V 2]− 1 = 1

2
(λ2

1 + λ2
2)− 1, (4.4)

and hS = λ1λ2 is the surface areal metric expressing the interfacial dilatation. Equation
(4.3) illustrates the symmetry of the in-plane tensions in the absence of bending
moments.

For small deformations, the strain-energy function may be approximated with the
truncated form

W = 1
3
ES (−Λ1 + Λ2 + Λ2

1), (4.5)

where ES is the surface modulus of elasticity, to be distinguished from the volume
modulus of elasticity of a three-dimensional material (Barthès-Biesel & Rallison 1981).
The constitutive equation (4.5) will be used in the numerical simulations presented in
later sections.

4.1. Bending moments

In the presence of bending moments, the in-plane tension tensor τ is modified with
the addition of an antisymmetric component according to equation (3.11), and with
the alteration of the symmetric part as required by the functional dependence of the
strain energy function on properly defined measures of bending. The reference state
of the bending moments, defined as the state where the bending moments vanish,
is not necessarily the same as that of the elastic tensions, reflecting differences in
the physical mechanisms that are responsible for their respective development. For
example, in the case of an interface with a dual molecular structure or a laminated
interface consisting of multiple molecular layers or thin shells, the relaxed state of the
individual components may correspond to different configurations.

Constitutive equations for elastic tensions and bending moments have been derived
by previous authors working in surface curvilinear coordinates (Zarda, Chien &
Skalak 1977; Steigmann 1999). One common assumption, also adopted in the present
study, is that the bending moments have a negligible effect on the symmetric part of
the elastic tensions given in (4.3). Our objective is to develop a Cartesian formulation
analogous to that shown in equation (4.3) for the in-plane elastic tensions.

Consider a small material patch of the interface at the resting, and then at a
deformed, state. The bending moments developing along the edges of the patch at
the deformed state depend on the instantaneous edge curvature, as well as on the
edge curvature at the resting state. Evaluation of the latter requires knowledge of the
rotation that the edge underwent due to the deformation, and necessitates an involved
formulation in terms of the surface deformation gradient (Steigmann & Ogden 1999).
If, however, the undeformed surface patch has uniform curvature, knowledge of the
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patch rotation is not required: no matter by how much the edge of a material
patch has rotated, the curvature of the edge at the undeformed state is constant and
independent of orientation.

Motivated by this simplification, we focus our attention on interfaces that are
isotropic at the reference bending state. In the case of materially homogeneous
and isotropic interfaces, the assumption of isotropy requires that the directional
curvature at the reference state is independent of orientation in the tangential plane,
which is true for the flat and the spherical shape. For sufficiently small bending
deformations, but not necessary small in-plane deformations, the bending moments
may be approximated with the linear constitutive equation

m = κB(Λ1, Λ2, κm, κG) (B − κRmP), (4.6)

where κB is the scalar bending modulus, allowed to be a function of the invariants of
the strain and curvature tensors (Steigmann & Ogden 1999), and κRm is the reference
mean curvature; κRm is zero for a planar resting shape, and non-zero for a spherical
resting shape. Since the bending moment tensor m is symmetric, the antisymmetric
part of τ vanishes, and the bending moments affect only the transverse shear tensions
by means of equation (3.11). In the remainder of this paper, we shall assume that κB
is a physical constant independent of its arguments listed on the right-hand side of
equation (4.6).

It is illuminating to compare the constitutive equation (4.6) with those adopted by
previous authors for axisymmetric membranes. In the axisymmetric case, knowledge
of the principal directions of the in-plane tensions and bending moments allows us to
relax the requirement of curvature isotropy at the reference state, and consider non-
planar and non-spherical resting shapes. Zarda et al. (1977) introduced the bending
measures of strain

Ks ≡ λsκs − κRs , Kϕ ≡ λϕκϕ − κRϕ, (4.7)

and invoked an analogy with the linear theory of bending of thin plates to derive the
following expression for the bending moments:

ms =
κB

λϕ
(Ks + νKϕ), mϕ =

κB

λs
(Kϕ + νKs), (4.8)

where ν is the Poisson ratio. If the membrane consists of a thin layer of a three-
dimensional elastic solid of thickness h, then κB = Eh3/[12(1 − ν2)]; for an incom-
pressible material, ν = 1/2. The bending measures of strain (4.7) have been designed
so that shape-preserving deformations do not induce bending moments; an example
is the deformation of an expanding spherical shell. The bending measures (4.8) are
appropriate for molecular membranes whose bending moments depend on the solid
angles subtended by molecular networks, but not for membranes consisting of thin
sheets of an elastic material whose thickness changes as a result of the deformation.
The constititutive equation (4.8) for axisymmetric deformation is a generalization of
the more restrictive constitutive equation (4.6), but its applicability to axisymmetric
shapes is an important limitation.

Now, given a strain energy function that incorporates the effect of bending mo-
ments in terms of bending measures of strain, we may use the principle of virtual
displacements to compute the jump in traction across the membrane by solving an
integral equation, as discussed in § 2. We may then invert the force balance (3.9) to
obtain the in-plane and transverse shear tensions, and finally use the normal compo-
nent of the torque balance expressed by (3.10) to obtain the bending moments. The
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procedure is illustrated by Navot (1998) for membranes developing in-plane elastic
tensions where the strain-energy function is defined in terms of the square of the
surface divergence of the surface deformation gradient.

The inverse problem, finding the strain-energy function that corresponds to the
stipulated constitutive equation (4.6), is more subtle. The linear dependence of the
bending moment tensor on the Cartesian curvature tensor suggests that the underlying
strain energy function is related to the Helfrich (1973) bending energy functional for
biological membranes, given by

E ≡ 2κB

∫
(κm − κRm)2 dS + κ′B

∫
κG dS, (4.9)

where the integration is performed over the instantaneous interface, κRm is the spon-
taneous curvature, which is the counterpart of the reference curvature in our termi-
nology, κB is the bending modulus associated with the mean curvature, and κ′B is the
bending modulus associated with the Gaussian curvature. The Gauss–Bonnet theorem
states that the last term on the right-hand side of (4.9) is a constant dependent only
on the topological genus of the membrane.

To investigate the relationship between the Helfrich energy functional (4.9) and
the constitutive equation (4.6), we consider a two-dimensional inextensible membrane
with vanishing reference curvature, as illustrated in figure 1(c). Setting κm = 1

2
κ, where

κ is the curvature of the membrane in the (x, y)-plane, we obtain

E ≡ 1
2
κB

∫
κ2 dl = 1

2
κB

∫
∂2x

∂l2
· ∂

2x

∂l2
dl, (4.10)

where x is the position of point particles along the membrane, and l is the arclength.
Requiring that the arclength between any two point particles is preserved during the
deformation, we find that the energy variation due to a virtual displacement δx is
given by

δE = κB

∫ [
∂2x

∂l2
· ∂

2δx

∂l2

]
dl. (4.11)

Integrating by parts, we derive the preferred form

δE = −κB
∫

∂

∂l

[
κ2t +

∂κ

∂l
n

]
· δx dl. (4.12)

where t is the unit tangent pointing in the direction of increasing arc length. The inex-
tensibility condition requires that the virtual displacement is subject to the constraint
t · (∂δx)(∂l) = 0, and this suggests the identity

∫
(∂/∂l)[f(l)t] · δx dl, where f(l) is an

arbitrary function. Comparing (4.12) to (2.3), (3.16), and (3.17), we find m = κBκ, in
agreement with (4.6). An analogous deduction for the tension is prevented by the
integral constraint stated previously in this paragraph.

5. Numerical method
A boundary element method was implemented to simulate the deformation of a

capsule from a specified initial shape, including the effect of bending stiffness. The
numerical procedure is an extension of that developed by Ramanujan & Pozrikidis
(1998) for capsules enclosed by membranes that develop only in-plane elastic tensions.
In the numerical implementation, the membrane was discretized into a network of
six-node curved triangles generated by successively subdividing a regular octahedron
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into descendant elements. When the viscosity ratio λ had a value other than unity,
the integral equation (2.2) was solved by the method of successive substitutions, and
the surface nodes were convected with the computed fluid velocity.

New features of the numerical procedure include a module for computing the
Cartesian curvature tensor B at the nodes of each curved triangle using the local
triangle parametric representation written in terms of the triangle barycentric coordi-
nates (ξ, η). First, the normal vector was computed at each node and its components
were averaged over the elements sharing the node. Second, the derivatives with respect
to ξ and η in equations (3.7) were computed by analytical differentiation assuming
that the averaged normal vector and position vector vary quadratically over each
element. The components of B were then averaged over the elements sharing the
node to improve the accuracy, and the curvature tensor was replaced by its symmetric
component to screen out numerical error. Once the curvature tensor was available,
the tensor of bending moments m was evaluated from the constitutive equation (4.6).

To evaluate the surface divergence of m, we first compute its gradient denoted by
J ≡ (P · ∇)m, using the relations

∂m

∂ξ
=
∂x

∂ξ
· J , ∂m

∂η
=
∂x

∂η
· J , n · J = 0. (5.1)

The derivatives of the components of the bending moment tensor with respect to ξ
and η were computed by analytical differentiation assuming quadratic variation over
each element. The evaluation of J at each node of each triangle requires solving nine
systems of 3× 3 linear equations. The components of J were then averaged over the
elements sharing the node to improve the accuracy, and the transverse shear tension
followed from the trace of J , as shown in equation (3.10).

To compute the single-layer integral over an element shown on the right-hand side
of (2.2), we first apply the trapezoidal rule to express it in the approximate form∫

Element

Gij(x0, x)∆fj(x) dS(x) ' ∆fj

∫
Element

Gij(x0, x) dS(x), (5.2)

where

∆f ≡ 1

SE

∫
Element

∆f(x) dS(x) (5.3)

is the average value of the traction discontinuity over the element, and SE is the surface
area of the element. Substituting the right-hand side of (3.9) into the integrand of
(5.3), and using the surface divergence theorem, we find

∆f = − 1

SE

∫
Element

[b · τ + (b · q)n](x) dl(x), (5.4)

where l the arclength along the element contour, b ≡ t×n is the unit vector tangential
to the element, perpendicular to the unit tangent vector t along the element contour,
and orthogonal to the surface unit normal vector n.

In the numerical simulations, we consider capsules with spherical and spheroidal
initial shapes, and capsules with axisymmetric biconcave shapes resembling the resting
shapes of red blood cells. In cylindrical polar coordinates with axial position x and
distance from the x-axis denoted by σ, the biconcave shape is described by the
equation

x(σ) = ± 1
2
R0 (1− σ̂2)1/2(0.207 + 2.003σ̂2 − 1.123 σ̂4), (5.5)

where σ̂ ≡ σ/R0, and R0 is the maximum radius of the biconcave disk occurring in
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the x = 0 plane. The average value of R0 of a healthy red blood cell is close to
3.91 µm, the cell volume is close to Vc = 1.574R3

0 , and the membrane surface area is
close to Sc = 8.772R2

0 (e.g. Evans & Fung 1972; Fung 1981).
All simulations were conducted with a standard grid of 512 elements defined by

1026 surface nodes located at the vertices and at the mid-points of the edges of the
triangles. Tests of accuracy showed that halving the number of elements changes the
coordinates of the marker points deployed over deforming capsules with compact
shapes by less than 2%. At high deformations, however, significant inaccuracies and
numerical instabilities due to inadequate spatial resolution arise. The development
of bending moments requires very small time steps for numerical stability, much
lower than those necessary to prevent instabilities in the case of membranes that
develop only in-plane elastic tensions. Given the strong constraint for stability, time
integration was carried out by the explicit Euler method using a constant time step.
Geometrical reflection symmetry with respect to the (x, y)-plane was exploited to
reduce the cost of the simulations.

Figure 2(a) shows stages in the evolution of the trace of the membrane of an
initially spheroidal capsule with axes ratios 1: 2: 2 in the (x, y)-plane, at a sequence
of dimensionless times t̂ ≡ tκB/(µa3

eq), represented by the circles and connecting solid
lines. A caret above x and y indicates that the spatial coordinates have been reduced
with respect to the equivalent volume capsule radius. Figure 2(b) shows corresponding
stages in the evolution of a biconcave disk. In both cases, the viscosity ratio λ is equal
to unity, and the modulus of elasticity ES was set equal to zero. The reference shape
of the membrane is a flat sheet with vanishing reference curvature, κRm = 0, and the
motion is driven by bending moments developing due to variations in the membrane
curvature.

The simulations shown in figure 2 confirm that the capsule relaxes to the spherical
shape whereupon a uniform and isotropic distribution of bending moments and
corresponding vanishing tranverse shear tensions are established. In both cases, the
capsules remain axially symmetric within the numerical error due to the three-
dimensional discretization. To illustrate the time scale of the motion, in figure 2(c)
we display the evolution of the x- and σ-axes of the relaxing spheroid shown in
figure 2(a), respectively denoted by a and b, and the corresponding evolution of the
Taylor deformation parameter Dxy ≡ |a− b|/(a+ b). At long times, the spheroid axes
tend to the equivalent capsule radius aeq , and the deformation parameter tends to
zero.

The simulations presented in figure 2 were conducted with dimensionless time
step ∆t̂ ≡ ∆taeqµ/κB = 0.0005. Each run required 1500 time steps at a cost of 12
hours of CPU time on a 550 MHz Intel processor running LINUX with the g77
FORTRAN compiler. Numerical instabilities are discernible at the late stages of the
motion displayed in the figures, requiring an even smaller time step to follow the
asymptotic approach to the stationary spherical shape. The change in the volume of a
capsule due to numerical error was less than 0.01%, which is typical of all simulations
presented in the next section. Simulations for non-unit values of λ require a CPU
time on the order of several days on the aforementioned computing facility.

A numerical method was also implemented for simulating the evolution of axisym-
metric capsules, where axial symmetry is embedded in the mathematical formulation
and numerical method (Kwak & Pozrikidis 2001). The method uses the boundary-
integral formulation for axisymmetric Stokes flow, where the velocity is expressed
in terms of line integrals over the trace of the interface in a meridional plane (e.g.
Pozrikidis 1992). The scalar transverse shear tension q was computed by numerical
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ŷ

(b)

–1.0

0

1.0

0 0.2 0.4 0.6 0.8
–0.4

–0.2

0

0.2

0.4
(c)

t̂

Dxy

a/aeq
–1

b/aeq
–1

x̂

ŷ

Figure 2. (a) Relaxation of an initially oblate spheroidal capsule with axes ratio 1: 2: 2 towards
the spherical shape, under the influence of bending moments alone: traces of the interface in the
(x, y)-plane at dimensionless times t̂ ≡ tκB/(µa3

eq) = 0, 0.25, 0.50, 0.74. The viscosity ratio λ is equal
to unity, and the reference state of the membrane is the flat sheet. (b) Corresponding relaxation of a
biconcave disk at times t̂ = 0, 0.25, 0.49, 0.75,∞. The circles and connecting solid lines show results
obtained using the numerical method for three-dimensional flow, and the dashed lines show results
obtained using the numerical method for axisymmetric flow. Numerical instabilities prevented the
continuation of the former simulation at long times. (c) Evolution of the x- and σ-axes and Taylor
deformation parameter of the relaxing spheroid shown in (a); the heavy dashed line shows results
for the Taylor deformation parameter obtained using the numerical method for axisymmetric flow.

differentiation with respect to radial distance from the x-axis, as required by the
right-hand side of equation (3.15). The traction discontinuity was computed from the
force balance (3.14).

Because the integration in the direction of the meridional angle is done analytically,
the code for axisymmetric flow is significantly more efficient, and produces results that
are more accurate than those for three-dimensional flow. Results obtained using the
code for axisymmetric flow are shown with the dashed lines in figure 2(b), and with
the heavy dashed line in figure 2(c). In these simulations, the bending moments were
computed using the simplified version of the constitutive equation for axisymmetric
flow, equation (4.6) whose scalar components are given by equations (4.8) and (4.9),
where the stretch ratios are replaced by unity and the Poisson ratio ν is set equal to
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zero on the right-hand sides. The good agreement corroborates the consistency of the
global Cartesian formulation and testifies to the reliability of the numerical method
for three-dimensional flow.

6. Results and discussion
At the initial instant, a capsule with a specified resting shape is exposed to simple

shear flow along the x-axis varying along the y-axis with velocity u∞ = (ky, 0, 0),
where k is the shear rate. Non-dimensionalizing all variables using as length scale
the equivalent volumetric capsule radius aeq , time scale the inverse shear rate k−1,
and stress µk, we find that the deformation of the capsule is determined by two
parameters: the dimensionless shear rate G ≡ µkaeq/ES , and the reduced ratio of the
bending modulus to the elastic modulus, κ̂B ≡ κB/(a2

eqES ).

6.1. Spherical capsules

The results presented in this section correspond to membranes with flat resting shapes
concerning the bending moments, corresponding to vanishing reference curvature.
Membranes with non-zero reference curvature were found to behave in a similar
fashion.

The simulations reveal that spherical capsules deform and reach stationary shapes,
no matter how strong the shear flow, in agreement with the results of previous
authors, as reviewed in the Introduction. As expected, bending stiffness restricts the
overall capsule deformation and prevents the development of highly curved shapes.
Figure 3(a) shows a family of contours of stationary deformed capsules in the (x, y)-
plane for viscosity ratio λ = 1, and reduced bending modulus κ̂B = 0, 0.01, 0.025, and
0.0375, at the low shear rate G = 0.05. Figure 3(b) shows a family of substantially
more deformed contours for λ = 1, κ̂B = 0, 0.04, 0.10, and 0.15, at the higher shear rate
G = 0.20. The shapes for κ̂B = 0 are in excellent agreement with those presented by
previous authors including Ramanujan & Pozrikidis (1998); because the numerical
method was implemented afresh with various alterations and improvements, the
comparison is not entirely contrived. The rounding of the membrane at the tips even
for small modulus of bending is evident from these illustrations.

Figure 4 illustrates, in quantitative terms, the effect of bending stiffness on the
capsule deformation and orientation. The graphs in figure 4(a, b) show the evolution
of the Taylor deformation parameter Dxy = (A − B)/(A + B), where A and B are,
respectively, the maximum and minimum size of the contour of the capsule in the
(x, y)-plane, for G = 0.05 and 0.20. The graphs in figure 4(c, d) show the evolution of
the inclination angle measured from the x-axis up to the location of the maximum
dimension A, denoted by θxy . The thickness of the lines scales with the magnitude of
the modulus of bending. High computational cost for the highest bending modulus
has limited the duration of the simulation. The results for κ̂B = 0 are in excellent
agreement with those presented by Ramanujan & Pozrikidis (1998). In the presence
of bending moments, the asymptotic approach to steady state occurs through a
mild oscillation possibly due to numerical error which, however, could have been
eliminated by computing the deformation parameter based on integral geometrical
surface measures, as discussed by Ramanujan & Pozrikidis (1998).

When a capsule has deformed and reached an equilibrium shape, the membrane
continues to rotate in a tank-treading mode with period T . The numerical results
showed that raising the bending modulus reduces the capsule deformation and shifts
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Figure 3. Contours of deformed stationary capsules with spherical initial shapes, for λ = 1, and
reduced modulus of bending κ̂B = 0, 0.01, 0.025, and 0.0375, at the low dimensionless shear rate
G = 0.05. (b) Corresponding contours for κ̂B = 0, 0.044, 0.10, and 0.15, at the higher dimensionless
shear rate G = 0.20.
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Figure 4. (a, b) Evolution of the Taylor deformation parameter Dxy leading to the equilibrium
shapes shown in figure 3(a, b), respectively, for G = 0.05 and 0.20. (c, d) Associated evolution of the
inclination angle θxy . The thickness of the lines increases as the bending modulus is raised.
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Figure 5. Distribution of the reduced in-plane shear tensions τxy and τz (solid and dashed line
respectively), and of the transverse shear tension qs (dotted line), along the trace of the capsule in
the (x, y)-plane at equilibrium, plotted with respect to the polar angle θ for λ = 1, G = 0.20, and
κ̂B = 0.15.

the reduced frequency f̂ ≡ 4π/(kT ) toward the value of unity corresponding to a
rotating solid sphere.

Figure 5 illustrates the distribution of the in-plane shear tensions τxy and τz in the
(x, y)-plane drawn, respectively, with the solid and dashed line, and of the transverse
shear tension qs drawn with the dotted line, for λ = 1, G = 0.20, and κ̂B = 0.15, at
equilibrium. The reduced tensions, denoted by a caret are defined as τ̂xy ≡ τxy/(µkaeq),
τ̂z ≡ τz/(µkaeq), and q̂s ≡ qs/(µkaeq), and are plotted with respect to the polar
angle measured in the counterclockwise direction around the capsule centre. The
distributions of the in-plane tensions are similar, but not identical, to those presented
by Pozrikidis (1995) and Ramanujan & Pozrikidis (1998) in the absence of bending
moments. The similarity occurs because the constitutive equation for the bending
moments adopted in the present study does not introduce antisymmetric tensions,
and the elastic tensions are determined solely by the instantaneous capsule shape.
The graphs in figure 5 show that the magnitude of the transverse shear tensions is
comparable to that of the elastic tensions, and reveal that compressive transverse
tensions may develop near the point of maximum elongation.

Similar results were obtained for viscosity ratio λ = 5 where the capsules have
more compact asymptotic shapes. The graphs in figure 6 illustrate the effect of the
bending modulus on the equilibrium shape and transient deformation and orientation
at the dimensionless shear rate G = 0.05. The high viscosity of the capsule restricts
the deformation, as it does in the case of liquid drops with constant surface tension,
and renders the effect of bending moments less significant. From a computational
standpoint, the requirement on time step for numerical stability, combined with the
need to solve an integral equation by iteration, raises the cost of these simulations
to several days of CPU time on the aforementioned computing facilities, which is a
serious pragmatic constraint.

6.2. Biconcave disks

Next, we consider the deformation of capsules with the initial shape of a biconcave
disk whose trace in a meridional plane is described by equation (5.5). The initial
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Figure 6. (a) Equilibrium shapes of capsules with viscosity ratio λ = 5 at dimensionless shear rate
G = 0.05, for κ̂B = 0, 0.01, 0.025, and 0.0375. (b, c) Evolution of the Taylor deformation parameter
and orientation in the (x, y)-plane; the thickness of the lines increases as the bending modulus is
raised.

shape is also the reference shape of the membrane elastic tensions, which means that
the initial elastic tensions vanish. Because, however, the reference shape concerning
the bending moments is assumed to be a planar sheet, the initial transverse shear
tensions are non-zero, and the equilibrium shape of the capsule is not the biconcave
disk but a more rounded shape determined by the dimensionless bending modulus
κ̂B . As κ̂B is raised, the equilibrium shape tends to become spherical.

The equilibrium shape in hydrostatics is the sensible choice for the initial shape
in the numerical simulations. Unfortunately, the accurate computation of this shape
as the asymptotic limit of a relaxing capsule in the absence of an imposed flow was
prevented by difficulties related to numerical instability, even when the motion was
computed using the more efficient code for axisymmetric flow. Numerical experimen-
tation indicated that the dimple of the biconcave disks disappears when κ̂B is on the
order of 0.01.

Figure 7 shows stages in the deformation of a capsule with λ = 1, initially inclined
at 45◦ with respect to the x-axis, at dimensionless shear rate defined with respect to
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ŷ

Figure 7. Stages in the deformation of a biconcave capsule with λ = 1, initially inclined at 45◦ with
respect to the x-axis, at dimensionless shear rate G = 0.20, for (a) κ̂B = 0, (b) 0.002, (c) 0.001, and
(d) 0.04.

the equivalent volume radius G = 0.20, for bending modulus κ̂B = 0.0, 0.002, 0.001,
and 0.04. The results for κ̂B = 0 duplicate, and are in agreement with, those presented
by Ramanujan & Pozrikidis (1998). At low values of κ̂B the deformed capsule has
a sigmoidal shape, whereas at high values the capsule tends to obtain the shape
of an inclined oblate ellipsoid. The simulations ended when numerical instabilities
developed near the region of maximum deformation due to the high curvature of the
membrane. In spite of this limitation, the rounding effect of the membrane bending
stiffness, locally at the tips and globally on the overall shape of the capsule, is
apparent.

Ramanujan & Pozrikidis (1998) discussed the effect of the capsule resting-shape
aspect ratio on the behaviour at long times. Simulations for oblate spheroidal capsules
and biconcave disks with λ = 1 suggested that the capsules deform and obtain nearly
stationary shapes while undergoing moderate shape oscillations, with the membrane
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Figure 8. (a) Stages in the deformation of a biconcave capsule with λ = 5 initially aligned with
the x-axis, at the dimensionless shear rate G = 0.20, in the absence of bending moments at times
kt = 0 ( e), 5.2 (�), and 9.2 (�). (b, c) Three-dimensional perspectives at times kt = 5.0 and 9.3,
illustrating transient membrane folding. (d) Same as (a) but for κ̂B = 0.01, at times kt = 0, 4.35, and
7.29, corresponding, respectively, to the circles, squares, and diamonds.

rotating around the capsule in a tank-treading mode. As the aspect ratio of the resting
shape in increased, the amplitude and period of the oscillations are both raised. The
results presented in figure 7 suggest that bending stiffness does not affect the nature
of the motion at long times documented in the earlier study.

Figure 8 shows results of a more demanding set of simulations with λ = 5
at dimensionless shear rate G = 0.20. At the initial instant, the mid-plane of the
biconcave disk lies in the (z, x)-plane. Figure 8(a) shows a sequence of evolving
capsule contours in the (x, y)-plane in the absence of bending stiffness corresponding
to κ̂B = 0, at dimensionless times kt = 0, 5.2, and 9.2. Figure 8(b, c) shows three-
dimensional perspectives of the capsule shape at dimensionless times kt = 5.0 and
9.3, illustrating significant transient membrane folding. The numerical investigations
of Ramanujan & Pozrikidis (1998) indicated that, as the viscosity ratio λ is raised,
a transition occurs in the capsule’s behaviour: steady deformation accompanied by
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shape oscillations is gradually replaced by global rotation similar to that exhibited by
non-spherical rigid particles (Jeffery 1922); in the case of capsules, global rotation is
accompanied by membrane tank-treading motion. Transition from shape oscillation
to global rotation is discernible in the profiles shown in figure 8(a).

The effect of bending stiffness becomes evident by comparing the profiles shown
in figure 8(a) with those shown in figure 8(d) corresponding to identical conditions
except that κ̂B = 0.01. Transient membrane folding is suppressed, and the capsule
rotates with less deformation, developing bulged shapes on either end. Thus, bending
stiffness promotes the transition to the Jeffery mode by forcing the capsule to project
deeper into the streamlines of the incoming simple shear flow.

7. Discussion
We have discussed a Cartesian formulation for describing elastic tensions and

bending moments developing in a thin membrane regarded as a thin shell; we
have derived differential and integral force and torque balances involving membrane
tensions, membrane moments, and hydrodynamic tractions acting as a distributed
load; and we have presented numerical implementations based on boundary element
methods.

Results of numerical simulations conducted by the boundary element method for
capsules with spherical and biconcave unstressed shapes deforming under the influence
of simple shear flow confirmed that the membrane stiffness restrains the overall
capsule deformation and leads to more compact equilibrium shapes at long times.
In the case of membranes consisting of thin elastic sheets, bending moments arise in
the process of integrating the membrane stresses over the small but non-infinitesimal
cross-section of the interfacial stratum; accordingly, the present numerical results
effectively illustrate the significance of the non-infinitesimal membrane thickness. For
membranes consisting of molecular networks, the numerical results illustrate the effect
of stiffness of the three-dimensional interfacial bonds.

Consideration of the effect of bending moments was motivated, in part, by a
desire to develop an integrated model for describing the deformation of red blood
cells, accounting for the effect of membrane bending stiffness. Previous authors
have accounted for the effects of in-plane elastic tensions, membrane viscosity, and
membrane incompressibility, as discussed in the Introduction. The ratio of the viscosity
of the red blood cell interior fluid to the viscosity of the suspending fluid in vivo ranges
betwen 5 and 10. The modulus of elasticity of the healthy red cell membrane is on
the order of ES = 10−3 dyn cm−1, and the bending modulus is on the order of
κB = 10−12 dyn cm (e.g. Zarda et al. 1973; Lipowsky 1991). Taking the equivalent
volumetric radius of the cell to be aeq ' 3.0 µm, we find that the reduced bending
modulus κ̂B ≡ κB/(a

2
eqES ) is on the order of 10−2, corresponding to the motion

depicted in figure 8(d).
The requirement of surface incompressibility on membranes consisting of lipid

bilayers is responsible for the development of isotropic tensions that have not been
included in the present formulation. For the evolutions displayed in figure 8, the
total surface area of the membrane is reduced by 10% during the motion. Bending
moments and isotropic tensions ensuring incompressibility are believed to play a
central role in hydrostatics by determining, and providing an explanation for, the
biconcave shape of red cells and for the more involved shapes of vesicles. Equilibrium
axisymmetric shapes have been discussed and computed by several previous authors
using a direct formulation or a formulation in terms of the bending energy function
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(e.g. Zarda et al. 1977; Seifert et al. 1991; Seifert 1997). An alternative methodol-
ogy particularly suited for three-dimensional shapes is suggested by the Cartesian
formulation discussed in this work.

The successful implementation of the equations of shell mechanics in global
Cartesian coordinates using standard numerical methods encourages its adaptation
to other problems of biofluiddynamics involving fluid–structure interaction. Pedley
and Heil studied steady flow through a flexible fluid-carrying elastic tube collapsed
in a non-axisymmetric fashion due to negative transmular pressure (e.g. Heil 1997;
Pedley & Luo 1998). To set up a realistic model for the wall mechanics, a nonlinear
shell theory in which elastic tensions and bending moments arise from a strain-energy
function by means of the principle of virtual displacements for infinitesimal variations
was employed. Justification for the use of the small displacement theory is provided by
the physical observation that, in spite of the large deformations, the strains of the shell
are small, and the use of Hooke’s law and Love’s approximation for the strain-energy
function in terms of the strain and bending energy tensors are appropriate (Heil &
Pedley 1995). The wall was assumed to be unstressed in the cylindrical state, and the
equations of shell mechanics were developed in surface curvilinear coordinates.

The present formulation offers an alternative for modelling the wall mechanics in
Cartesian coordinates, relaxing the assumption of small deformations. An important
restriction is the requirement that the resting shape has uniform curvature. For
arbitrary resting shapes, the formulation in terms of surface curvilinear coordinates
implemented either directly by force and torque balances or indirectly in terms of the
principle of virtual displacements developed by Pedley and Heil appears to be the only
alternative. This, however, may not be a serious limitation: cylindrical membranes
readily arise from the rolling of flat sheets.

This research has been supported by a grant provided by the National Science
Foundation.
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